+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Название чисел. Чем отличается число от цифры: математические и лингвистические различия

Цифры и числа: отличия | НАУМЁНОК

Название чисел. Чем отличается число от цифры: математические и лингвистические различия

Все знают, что есть цифры и числа. Но если спросить: «Чем отличается цифра от числа?«, то многие дети, а порой и взрослые, затрудняются с ответом. А как объяснить эту разницу ребенку простыми словами?

Чтобы ответить на этот вопрос и понять в чём различие между цифрой и числом надо разобраться с понятиями, что такое цифра и что такое число.

1. Что такое цифра?

2. Что такое число?

3. Чем отличается число от цифры?

4. Какие виды чисел изучаются в начальной школе?

5. Как дать характеристику числу?

Что такое цифра?

Цифра — это письменный знак, изображающий число.

Что значит слово цифра? Это слово арабского происхождения и означает ноль или пустое место. Их существует только десять. Они придуманы для обозначения числа. Цифр всего 10.

Что такое число?

Число — это основное математическое понятие.

Его используют для:

  • количественной характеристики;
  • сравнения;
  • обозначения нумерации объектов.

Числа записываются при помощи цифр. Различают несколько видов чисел.

В древнейшие времена цифры обозначали прямолинейными пометками. Палочки до сих пор используются для обозначения римских цифр. Римских цифр 7.

I, V, X, L, C, D, M

Римские числа также, как и арабские, образуются при помощи цифр, только в данном случае римских.

В римских числах желательно разбираться, т.к. они часто используются не только в школьном курсе математики, но и в жизни. Например, на циферблате часов.

Отличия числа от цифры

  1. С числами можно проводить различные математические действия. С цифрами такого делать нельзя.
  2. Число может быть отрицательным, дробным, в отличие от цифр.

  3. Количество арабских цифр всего 10 (римских — 7), а чисел — бесконечное множество, т.к. они состоят из цифр.

Надеюсь, что теперь вам всё понятно, и вы сможете без труда объяснить даже ребёнку, чем отличается число от цифры.

На уроках математики в начальной школе используется очень полезное упражнение. Детей просят дать характеристику числу. Другими словами рассказать о числе все, что знаешь. Не всем детям это задание даётся легко. Чтобы его выполнить пригодятся вышеописанные знания и не только.

Какие виды чисел изучаются в начальной школе?

В начальной школе рассматриваются: натуральные числа, число 0, доли и дроби. 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11…

Соответственно самое маленькое двузначное число 10, а самое большое — 99.

Аналогично числа можно охарактеризовать как трёхзначные, четырёхзначные и т.д.

Иногда дети затрудняются назвать самое маленькое, например, пятизначное число (10 000) или самое большое семизначное (9 999 999). Просто полезно будет потренироваться это делать.

Как дать характеристику числу?

Разберём несколько примеров.

Число 7 — однозначное, нечетное, соседи числа 7 числа 6 и 8.

Также чисел первого десятка можно добавить такое дополнительное задание, как состав числа. Т.е. число 7 можно получить сложением чисел 1 и 6, 2 и 5, 3 и 4.

Число 10 — двузначное, чётное, круглое, соседи числа 9 и 11. Число 10 можно получить сложением чисел 1 и 9, 2 и 8, 3 и 7, 4 и 6, 5 и 5.

Чем крупнее число, тем больше можно о нём рассказать.

Число 999 — наибольшее трёхзначное число, нечётное, соседи 998 и 1000, в числе 9 сотен, 9 десятков и 9 единиц.

Надеюсь, что полученные знания были вам полезны и теперь вы знаете чем отличается цифра от числа, сможете объяснить это ребёнку простыми словами, а также потренироваться давать характеристику числам.

С уважением, Ольга Наумова

Заходите в Книжную лавку  за полезными книгами!

Благодарю, что поделились статьей в социальных сетях!

Источник: http://naymenok.ru/chem-otlichaetsya-tsifra-ot-chisla/

Как цифры отличаются от чисел. Чем отличается число от цифры: математические и лингвистические различия

Название чисел. Чем отличается число от цифры: математические и лингвистические различия

В названиях арабских чисел каждая цифра принадлежит своему разряду, а каждые три цифры образуют класс. Таким образом, последняя цифра в числе обозначает количество единиц в нем и называется, соответственно, разрядом единиц.

Следующая, вторая с конца, цифра обозначает десятки (разряд десятков), и третья с конца цифра указывает на количество сотен в числе – разряд сотен. Дальше разряды точно также по очереди повторяются в каждом классе, обозначая уже единицы, десятки и сотни в классах тысяч, миллионов и так далее.

Если число небольшое и в нем нет цифры десятков или сотен, принято принимать их за ноль. Классы группируют цифры в числах по три, нередко в вычислительных приборах или записях между классами ставится точка или пробел, чтобы визуально разделить их. Это сделано для упрощения чтения больших чисел.

Каждый класс имеет свое название: первые три цифры – это класс единиц, далее идет класс тысяч, затем миллионов, миллиардов (или биллионов) и так далее.

Поскольку мы пользуемся десятичной системой исчисления, то основная единица измерения количества – это десяток, или 10 1 . Соответственно с увеличением количества цифр в числе, увеличивается и количество десятков 10 2 ,10 3 ,10 4 и т.д.

Зная количество десятков можно легко определить класс и разряд числа, например, 10 16 – это десятки квадриллионов, а 3×10 16 – это три десятка квадриллионов.

Разложение чисел на десятичные компоненты происходит следующий образом – каждая цифра выводится в отдельное слагаемое, умножаясь на требуемый коэффициент 10 n, где n – положение цифры по счет слева направо.
Например:253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Также степень числа 10 используется и в написании десятичных дробей : 10 (-1) – это 0,1 или одна десятая. Аналогичным образом с предыдущим пунктом, можно разложить и десятичное число, n в таком случае будет обозначать положение цифры от запятой справа налево, например:0,347629= 3×10 (-1) +4×10 (-2) +7×10 (-3) +6×10 (-4) +2×10 (-5) +9×10 (-6)

Названия десятичных чисел. Десятичные числа читаются по последнему разряду цифр после запятой, например 0,325 – триста двадцать пять тысячных, где тысячные – это разряд последней цифры 5.

Таблица названий больших чисел, разрядов и классов

1-й класс единицы 1-й разряд единицы 2-й разряд десятки 3-й разряд сотни 1 = 10 0 10 = 10 1 100 = 10 2
2-й класс тысячи 1-й разряд единицы тысяч 2-й разряд десятки тысяч 3-й разряд сотни тысяч 1 000 = 10 3 10 000 = 10 4 100 000 = 10 5
3-й класс миллионы 1-й разряд единицы миллионов 2-й разряд десятки миллионов 3-й разряд сотни миллионов 1 000 000 = 10 6 10 000 000 = 10 7 100 000 000 = 10 8
4-й класс миллиарды 1-й разряд единицы миллиардов 2-й разряд десятки миллиардов 3-й разряд сотни миллиардов 1 000 000 000 = 10 9 10 000 000 000 = 10 10 100 000 000 000 = 10 11
5-й класс триллионы 1-й разряд единицы триллионов 2-й разряд десятки триллионов 3-й разряд сотни триллионов 1 000 000 000 000 = 10 12 10 000 000 000 000 = 10 13 100 000 000 000 000 = 10 14
6-й класс квадриллионы 1-й разряд единицы квадриллионов 2-й разряд десятки квадриллионов3-й разряд десятки квадриллионов 1 000 000 000 000 000 = 10 15 10 000 000 000 000 000 = 10 16 100 000 000 000 000 000 = 10 17
7-й класс квинтиллионы 1-й разряд единицы квинтиллионов 2-й разряд десятки квинтиллионов 3-й разряд сотни квинтиллионов 1 000 000 000 000 000 000 = 10 18 10 000 000 000 000 000 000 = 10 19 100 000 000 000 000 000 000 = 10 20
8-й класс секстиллионы 1-й разряд единицы секстиллионов 2-й разряд десятки секстиллионов 3-й разряд сотни секстиллионов 1 000 000 000 000 000 000 000 = 10 21 10 000 000 000 000 000 000 000 = 10 22 1 00 000 000 000 000 000 000 000 = 10 23
9-й класс септиллионы 1-й разряд единицы септиллионов 2-й разряд десятки септиллионов 3-й разряд сотни септиллионов 1 000 000 000 000 000 000 000 000 = 10 24 10 000 000 000 000 000 000 000 000 = 10 25 100 000 000 000 000 000 000 000 000 = 10 26
10-й класс октиллион 1-й разряд единицы октиллионов 2-й разряд десятки октиллионов 3-й разряд сотни октиллионов 1 000 000 000 000 000 000 000 000 000 = 10 27 10 000 000 000 000 000 000 000 000 000 = 10 28 100 000 000 000 000 000 000 000 000 000 = 10 29

Доктор филологических наук Наталия Черникова

Понятие о числе зародилось в глубокой древности, когда человек научился считать предметы: два дерева, семь быков, пять рыб. Сначала счёт вели на пальцах.

В разговорной речи мы до сих пор иногда слышим: «Дай пять!», то есть подай руку. А раньше говорили: «Дай пясть!» Пясть – это рука, а на руке пять пальцев.

Когда-то слово пять имело конкретное значение – пять пальцев пясти, то есть руки.

Позднее вместо пальцев для счёта начали использовать зарубки на палочках. А когда возникла письменность, для обозначения чисел стали употреблять буквы. Например, у славян буква А означала число «один» (Б не имело числового значения), В – два, Г – три, Д – четыре, Е – пять.

Постепенно люди стали осознавать числа независимо от предметов и лиц, которые могли подвергаться счёту: просто число «два» или число «семь». В связи с этим у славян появилось слово число.

В значении «счёт, величина, количество» его начали употреблять в русском языке с ХI века. Наши предки использовали слово число и для указания на дату, год.

С ХIII века оно стало обозначать ещё и дань, подать.

В старину в книжном русском языке наряду со словом число имело хождение существительное чисмя, а также прилагательное чисменый. В ХVI веке появился глагол числити – «считать».

Во второй половине ХV века в европейских странах получили распространение специальные знаки, обозначающие числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Их изобрели индийцы, а в Европу они попали благодаря арабам, поэтому и получили название арабские цифры.

В нашей стране арабские цифры появились в Петровскую эпоху. В то же время в русский язык вошло слово цифра. Арабское по происхождению, оно тоже пришло к нам из европейских языков.

У арабов первоначальное значение слова цифра – это нуль, пустое место. Именно в этом значении существительное цифра вошло во многие европейские языки, в том числе в русский.

С середины ХVIII века слово цифра приобрело новое значение – знак числа.

Совокупность цифр в русском языке называлась цифирь (в старой орфографии цыфирь). Дети, изучавшие счёт, говорили: учу цифирь, пишу цифирь.

(Вспомните учителя по фамилии Цыфиркин из комедии Дениса Ивановича Фонвизина «Недоросль», который обучал нерадивого Митрофанушку цифири, то есть арифметике.

) При Петре I в России открыли цифирные школы – начальные государственные общеобразовательные учебные заведения для мальчиков. В них кроме других дисциплин детям преподавали цифирную науку – арифметику, математику.

Итак, слова число и цифра различаются и по значению и по происхождению. Число – единица счёта, выражающая количество (один дом, два дома, три дома и т.д.). Цифра – знак (символ), обозначающий значение числа. Для записи чисел мы используем арабские цифры – 1, 2, 3… 9, 0, а в некоторых случаях и римские – I, II, III, IV, V и т.д.

В наши дни слова число и цифра употребляются и в других значениях. Например, когда мы спрашиваем «Какое сегодня число?», то имеем в виду день месяца.

Сочетания «в том числе», «из числа кого-нибудь», «в числе кого-то» обозначают состав, совокупность людей или предметов. А если мы доказываем что-то с цифрами в руках, то обязательно используем числовые показатели.

Словом цифра называют также денежную сумму (цифра дохода, цифра гонорара).

В разговорной речи слова число и цифра часто заменяют друг друга. Например, числом мы называем не только величину, но и знак, который её выражает. Об очень больших в числовом отношении величинах говорят астрономические числа или астрономические цифры.

Слово количество появилось в русском языке в XI веке. Оно пришло из старославянского языка и образовано от слова колико – «сколько».

Существительное количество употребляется в применении ко всему, что поддаётся счёту и измерению.

Это могут быть люди или предметы (количество гостей, количество книг), а также количество вещества, которое мы не считаем, а измеряем (количество воды, количество песка).

Невозможно представить себе жизнь без счёта. В обиходе каждый из нас встречает и цифры, и числа ежедневно, даже не задумываясь, где работает с цифрами, а где с числами, и в чём их отличие.

Определение цифры следующее: знак, принятый и используемый для обозначения количества (выраженного в числовом эквиваленте). А число – это выражение количественных характеристик в удобном виде, посредством цифр.

Отсюда два вывода: числа состоят из цифр и цифра обладает знаковыми свойствами (обусловленность, узнаваемость, неизменяемость, и т.д.). Числа также обладают знаковыми свойствами, так как это некая абстракция, однако они обладают ими лишь потому, что состоят из цифр.

Но цифра не только используется нами, как составляющее числа, но и как самостоятельный аналог числа, если речь идёт о предметах в количестве от одного до девяти включительно (так как цифр 10 – от нуля до девяти). Данные признаки применимы не только к арабским цифрам, но и к римским.

Аналогично I V X L C D M – это римские цифры, а вот V I I I – это римское число, хотя понятийно в другой системе счисления ему соответствует арабская цифра 8.

Выводы сайт

  1. Цифры – это единицы счёта от 0 до 9, остальное – числа.
  2. Числа состоят из цифр.
  3. Цифры – это знаки, а числа – это количественная абстракция.

  4. Цифры и числа различных систем счисления настолько не совпадают, что число одной системы может оказаться цифрой другой, а всё потому, что это отвлечённые, выдуманные человеком понятия.

Всматриваясь в причудливые знаки, не сразу поймешь, что символизируют древние числа и цифры.

Мешки с крупами, орудия труда. В хвостатых, изогнутых знаках читается менталитет древнего народа, уровень его развития, навыки, экономическая обстановка. Обозначения цифр сотканы из глубоких абстракций и художественных представлений о мире.

Рождение цифр неразрывно связано с возникновением письменности, но узелковое письмо шумерских народов появилось даже раньше. Оно было создано для счета. О чем это говорит? Уметь считать было важно во II в. до н.э., и в высокотехнологичном ХХI столетии.

Числа и бизнес пребывают в прочном тандеме. Числа нужны для основания и раскрутки бизнеса (для вычисления рентабельности, расчета конверсии, КПД), а бизнес нужен для хороших цифр на счету в банке .

[attention type=yellow]
Счет стал неотъемлемой частью человеческого мышления и настолько влился в повседневную жизнь, что мы даже не замечаем его. Предприниматель должен числа не просто видеть, считать и предполагать, а читать.
[/attention]

Созерцать не глазами, а разумом.

Цифры и числа – это разные понятия. В обиходе мы их путаем, но существенная разница в сути слов от этого не исчезла. Цифра служит для условного обозначения числа. Число выражает количественную характеристику в цифрах, и представляет собой более обобщенное понятие.

Если проанализировать, какими были первые цифры, можно увидеть обширную историю культуры отдельного народа. Составление обозначений для чисел потребовало более высокого интеллектуального уровня.

Поэтому наши предки оставляли тысячи зарубок на твердых материалах. Столько, сколько требовалось. Так, наивно, но достоверно, заполнялись древние отчетные документы, «чеки» и т.п.

Первые цифры представляли собой примитивные засечки и значки.

Пример древних чисел и цифр

Генезис цифр останется для ученых неизведанной Марианской впадиной. Витиеватая история возникновения вызывает замешательство. Точно известно, что первые попытки письменной фиксации цифр были в Египте и Месопотамии: найденные древние математические записи тому свидетельство. Эти государства располагались далеко друг от друга, письменность и культура в каждом из них уникальна.

В Древнем Египте сформировалось скорописное иероглифическое письмо, месопотамские писцы использовали клинопись. Поэтому египетские первые цифры своей формой передавали природу всех окружающих предметов: животные, растения, предметы быта и т.д. Папирус Ринда (1650 г. до н.э.

) и папирус Голенищева (1850 г. до н.э.) – числовые древнеегипетские документы – свидетельствуют о высоком культурном развитии народа.

Месопотамская клинопись запечатлена на глиняных табличках, на которых цифры представлены небольшими клиньями, повернутыми в разные стороны соответственно своему значению.

И в египетских, и в месопотамских системах счисления есть цифры от 1 до 10, особые метки для обозначения десятков, сотен и тысяч, и ноль, который обозначали выделенным пустым местом.

Числа древнего Египта построены грамотно и логично. Рационализм и четкость отличают эти системы счисления от аналогичных попыток других народов. Цифры значением меньше десяти обозначались ׀. Например, цифра 6 выглядела как ׀׀׀׀׀׀.

Число 10 обозначалось перевернутой подковой в иероглифической системе и особым символом – в иератической. Сколько десятков в числе, столько и «подков». Иератическая система письменности предполагала для каждого числа, на десяток выше предыдущего, отдельный символ.

[attention type=red]
Начиная от 100, это была стилизованная клюшка, над которой с каждой новой сотней ставили крохотную пометку.
[/attention]

Источник: https://bibia.ru/kak-cifry-otlichayutsya-ot-chisel-chem-otlichaetsya-chislo-ot-cifry-matematicheskie.html

В чем отличие цифр чисел. чем отличается число от цифры: математические и лингвистические различия

Название чисел. Чем отличается число от цифры: математические и лингвистические различия

Готов узнать, чем отличаются цифры от чисел? Не будем тянутьединицу за чуб, а двойку за хвост, рассказываем!

Чтотакое цифра?

Чтобы разобраться в отличиях между числами и цифрами, дляначала запомни несколько простых утверждений:

Цифры – это единицы счета от 0 до 9, остальные все – числа.

Числа состоят из цифр.

Цифры являются знаками, а каждое число – этоколичественная абстракция.

Слово «цифра» происходит от арабского «сифр», чтоозначает «ноль». Цифры – это знаки для записи чисел. Обычно цифра означает одиниз следующих графических знаков: 0 1 2 3 4 5 6 7 8 9. Это так называемыеарабские цифры.

Однако кроме арабской существует много других системсчисления, и они настолько отличаются, что число одной из них может оказатьсяцифрой в другой.

Римские цифры, например, записывают так: I V X L C D M.Поэтому арабское число «10» в римской системе счисления будет цифрой «Х»(десять), которая обозначается латинской буквой.

Шестнадцатеричные цифры, которые чаще всего используютразработчики компьютеров и программисты, на письме обозначают следующимобразом: 0 1 2 3 4 5 6 7 8 9 A B C D E F. В этой системе счисления арабскиецифры от 0 до 9 соответствуют значениям от нуля до девяти, а шесть латинскихбукв A, B, C, D, E, F соответствуют значениям от десяти до пятнадцати.

Каждое число шестнадцатеричной системы счета записывается спомощью 16-ти цифр.

В некоторых языках (древнегреческом, церковнославянском, иврите)существует система записи чисел буквами.

Как написать цифрына иврите.

Чтоназывают числом?

Число– это один из основных объектов , которыйиспользуют для подсчета, измерения и маркировки.

Символы, применяемые для обозначения чисел, называются цифрами.

Кроме использования цифр при счете и измерении, имипользуются для маркировки (к примеру, телефонный номер) и упорядочения (например,универсальный идентификационный номер ISBN).

Подытоживая выше сказанное, делаем вывод, что число можетуказывать на символ, слово или математическую абстракцию.

Но интересно, что кроме практического применения, числаимеют также культурное значение. На Западе, например, число 13 считаютнесчастливым, а «миллион» часто может означать просто «много».

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса:

Первый класс справа называют классом единиц, второй – тысяч, третий – миллионов, четвёртый – миллиардов, пятый – триллионов, шестой – квадриллионов, седьмой – квинтиллионов, восьмой – секстиллионов.

Для удобства чтения записи многозначного числа, между классами оставляется небольшой пробел. Например, чтобы прочитать число 148951784296, выделим в нём классы:

и прочитаем число единиц каждого класса слева направо:

148 миллиардов 951 миллион 784 тысячи 296.

При чтении класса единиц в конце обычно не добавляют слово единиц.

Каждая цифра в записи многозначного числа занимает определённое место – позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом.

Счёт разрядов идёт справа налево. То есть, первая цифра справа в записи числа называется цифрой первого разряда, вторая цифра справа – цифрой второго разряда и т. д. Например, в первом классе числа 148 951 784 296, цифра 6 является цифрой первого разряда, 9 – цифра второго разряда, 2 – цифра третьего разряда:

Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами:
единицы называют единицами 1-го разряда (или простыми единицами) десятки называют единицами 2-го разряда

сотни называют единицами 3-го разряда и т. д.

Все единицы, кроме простых единиц, называются составными единицами. Так, десяток, сотня, тысяча и т. д. – составные единицы. Каждые 10 единиц любого разряда составляют одну единицу следующего (более высокого) разряда. Например, сотня содержит 10 десятков, десяток – 10 простых единиц.

Любая составная единица по сравнению с другой единицей, меньшей её называется единицей высшего разряда, а по сравнению с единицей, большей её, называется единицей низшего разряда. Например, сотня является единицей высшего разряда относительно десятка и единицей низшего разряда относительно тысячи.

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, надо отбросить все цифры, означающие единицы низших разрядов и прочитать число, выражаемое оставшимися цифрами.

Например, требуется узнать, сколько всего сотен содержится в числе 6284, т. е. сколько сотен заключается в тысячах и в сотнях данного числа вместе.

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит в числе есть две простые сотни. Следующая влево цифра – 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60. Всего, таким образом, в данном числе содержится 62 сотни.

Цифра 0 в каком-нибудь разряде означает отсутствие единиц в данном разряде. Например, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен – отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

172 526 – сто семьдесят две тысячи пятьсот двадцать шесть.
102 026 – сто две тысячи двадцать шесть.

Доктор филологических наук Наталия Черникова

Понятие о числе зародилось в глубокой древности, когда человек научился считать предметы: два дерева, семь быков, пять рыб. Сначала счёт вели на пальцах.

В разговорной речи мы до сих пор иногда слышим: «Дай пять!», то есть подай руку. А раньше говорили: «Дай пясть!» Пясть – это рука, а на руке пять пальцев.

Когда-то слово пять имело конкретное значение – пять пальцев пясти, то есть руки.

Позднее вместо пальцев для счёта начали использовать зарубки на палочках. А когда возникла письменность, для обозначения чисел стали употреблять буквы. Например, у славян буква А означала число «один» (Б не имело числового значения), В – два, Г – три, Д – четыре, Е – пять.

Постепенно люди стали осознавать числа независимо от предметов и лиц, которые могли подвергаться счёту: просто число «два» или число «семь». В связи с этим у славян появилось слово число.

В значении «счёт, величина, количество» его начали употреблять в русском языке с ХI века. Наши предки использовали слово число и для указания на дату, год.

С ХIII века оно стало обозначать ещё и дань, подать.

В старину в книжном русском языке наряду со словом число имело хождение существительное чисмя, а также прилагательное чисменый. В ХVI веке появился глагол числити – «считать».

Во второй половине ХV века в европейских странах получили распространение специальные знаки, обозначающие числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Их изобрели индийцы, а в Европу они попали благодаря арабам, поэтому и получили название арабские цифры.

В нашей стране арабские цифры появились в Петровскую эпоху. В то же время в русский язык вошло слово цифра. Арабское по происхождению, оно тоже пришло к нам из европейских языков.

У арабов первоначальное значение слова цифра – это нуль, пустое место. Именно в этом значении существительное цифра вошло во многие европейские языки, в том числе в русский.

С середины ХVIII века слово цифра приобрело новое значение – знак числа.

Совокупность цифр в русском языке называлась цифирь (в старой орфографии цыфирь). Дети, изучавшие счёт, говорили: учу цифирь, пишу цифирь.

(Вспомните учителя по фамилии Цыфиркин из комедии Дениса Ивановича Фонвизина «Недоросль», который обучал нерадивого Митрофанушку цифири, то есть арифметике.

) При Петре I в России открыли цифирные школы – начальные государственные общеобразовательные учебные заведения для мальчиков. В них кроме других дисциплин детям преподавали цифирную науку – арифметику, математику.

Итак, слова число и цифра различаются и по значению и по происхождению. Число – единица счёта, выражающая количество (один дом, два дома, три дома и т.д.). Цифра – знак (символ), обозначающий значение числа. Для записи чисел мы используем арабские цифры – 1, 2, 3… 9, 0, а в некоторых случаях и римские – I, II, III, IV, V и т.д.

В наши дни слова число и цифра употребляются и в других значениях. Например, когда мы спрашиваем «Какое сегодня число?», то имеем в виду день месяца.

Сочетания «в том числе», «из числа кого-нибудь», «в числе кого-то» обозначают состав, совокупность людей или предметов. А если мы доказываем что-то с цифрами в руках, то обязательно используем числовые показатели.

Словом цифра называют также денежную сумму (цифра дохода, цифра гонорара).

В разговорной речи слова число и цифра часто заменяют друг друга. Например, числом мы называем не только величину, но и знак, который её выражает. Об очень больших в числовом отношении величинах говорят астрономические числа или астрономические цифры.

Слово количество появилось в русском языке в XI веке. Оно пришло из старославянского языка и образовано от слова колико – «сколько».

Существительное количество употребляется в применении ко всему, что поддаётся счёту и измерению.

Это могут быть люди или предметы (количество гостей, количество книг), а также количество вещества, которое мы не считаем, а измеряем (количество воды, количество песка).

Всматриваясь в причудливые знаки, не сразу поймешь, что символизируют древние числа и цифры. Мешки с крупами, орудия труда. В хвостатых, изогнутых знаках читается менталитет древнего народа, уровень его развития, навыки, экономическая обстановка.

Обозначения цифр сотканы из глубоких абстракций и художественных представлений о мире. Рождение цифр неразрывно связано с возникновением письменности, но узелковое письмо шумерских народов появилось даже раньше. Оно было создано для счета. О чем это говорит? Уметь считать было важно во II в.

до н.э., и в высокотехнологичном ХХI столетии.

Числа и бизнес пребывают в прочном тандеме. Числа нужны для основания и раскрутки бизнеса (для вычисления рентабельности, расчета конверсии, КПД), а бизнес нужен для хороших цифр на счету в банке .

[attention type=yellow]
Счет стал неотъемлемой частью человеческого мышления и настолько влился в повседневную жизнь, что мы даже не замечаем его. Предприниматель должен числа не просто видеть, считать и предполагать, а читать.
[/attention]

Созерцать не глазами, а разумом.

Цифры и числа – это разные понятия. В обиходе мы их путаем, но существенная разница в сути слов от этого не исчезла. Цифра служит для условного обозначения числа. Число выражает количественную характеристику в цифрах, и представляет собой более обобщенное понятие.

Если проанализировать, какими были первые цифры, можно увидеть обширную историю культуры отдельного народа. Составление обозначений для чисел потребовало более высокого интеллектуального уровня.

Поэтому наши предки оставляли тысячи зарубок на твердых материалах. Столько, сколько требовалось. Так, наивно, но достоверно, заполнялись древние отчетные документы, «чеки» и т.п.

Первые цифры представляли собой примитивные засечки и значки.

Пример древних чисел и цифр

Генезис цифр останется для ученых неизведанной Марианской впадиной. Витиеватая история возникновения вызывает замешательство. Точно известно, что первые попытки письменной фиксации цифр были в Египте и Месопотамии: найденные древние математические записи тому свидетельство. Эти государства располагались далеко друг от друга, письменность и культура в каждом из них уникальна.

В Древнем Египте сформировалось скорописное иероглифическое письмо, месопотамские писцы использовали клинопись. Поэтому египетские первые цифры своей формой передавали природу всех окружающих предметов: животные, растения, предметы быта и т.д. Папирус Ринда (1650 г. до н.э.

) и папирус Голенищева (1850 г. до н.э.) – числовые древнеегипетские документы – свидетельствуют о высоком культурном развитии народа.

Месопотамская клинопись запечатлена на глиняных табличках, на которых цифры представлены небольшими клиньями, повернутыми в разные стороны соответственно своему значению.

И в египетских, и в месопотамских системах счисления есть цифры от 1 до 10, особые метки для обозначения десятков, сотен и тысяч, и ноль, который обозначали выделенным пустым местом.

Числа древнего Египта построены грамотно и логично. Рационализм и четкость отличают эти системы счисления от аналогичных попыток других народов. Цифры значением меньше десяти обозначались ׀. Например, цифра 6 выглядела как ׀׀׀׀׀׀.

Число 10 обозначалось перевернутой подковой в иероглифической системе и особым символом – в иератической. Сколько десятков в числе, столько и «подков». Иератическая система письменности предполагала для каждого числа, на десяток выше предыдущего, отдельный символ.

[attention type=red]
Начиная от 100, это была стилизованная клюшка, над которой с каждой новой сотней ставили крохотную пометку.
[/attention]

Источник: https://association-ko.ru/secrets/v-chem-otlichie-cifr-chisel-chem-otlichaetsya-chislo-ot-cifry-matematicheskie-i-lingvisticheskie-razlichiya/

Понятие цифра и число отличия. Чем отличается число от цифры: математические и лингвистические различия

Название чисел. Чем отличается число от цифры: математические и лингвистические различия

В названиях арабских чисел каждая цифра принадлежит своему разряду, а каждые три цифры образуют класс. Таким образом, последняя цифра в числе обозначает количество единиц в нем и называется, соответственно, разрядом единиц.

Следующая, вторая с конца, цифра обозначает десятки (разряд десятков), и третья с конца цифра указывает на количество сотен в числе – разряд сотен. Дальше разряды точно также по очереди повторяются в каждом классе, обозначая уже единицы, десятки и сотни в классах тысяч, миллионов и так далее.

Если число небольшое и в нем нет цифры десятков или сотен, принято принимать их за ноль. Классы группируют цифры в числах по три, нередко в вычислительных приборах или записях между классами ставится точка или пробел, чтобы визуально разделить их. Это сделано для упрощения чтения больших чисел.

Каждый класс имеет свое название: первые три цифры – это класс единиц, далее идет класс тысяч, затем миллионов, миллиардов (или биллионов) и так далее.

Поскольку мы пользуемся десятичной системой исчисления, то основная единица измерения количества – это десяток, или 10 1 . Соответственно с увеличением количества цифр в числе, увеличивается и количество десятков 10 2 ,10 3 ,10 4 и т.д.

Зная количество десятков можно легко определить класс и разряд числа, например, 10 16 – это десятки квадриллионов, а 3×10 16 – это три десятка квадриллионов.

Разложение чисел на десятичные компоненты происходит следующий образом – каждая цифра выводится в отдельное слагаемое, умножаясь на требуемый коэффициент 10 n, где n – положение цифры по счет слева направо.
Например:253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Также степень числа 10 используется и в написании десятичных дробей : 10 (-1) – это 0,1 или одна десятая. Аналогичным образом с предыдущим пунктом, можно разложить и десятичное число, n в таком случае будет обозначать положение цифры от запятой справа налево, например:0,347629= 3×10 (-1) +4×10 (-2) +7×10 (-3) +6×10 (-4) +2×10 (-5) +9×10 (-6)

Названия десятичных чисел. Десятичные числа читаются по последнему разряду цифр после запятой, например 0,325 – триста двадцать пять тысячных, где тысячные – это разряд последней цифры 5.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.